Passive Active L/S-Band Microwave **Aircraft Sensor for Ocean Salinity** Measurement

F. K. Li,

W. J. Wilson,

S. Yueh,

S. Dinardo

Jet Propulsion Laboratory

S. Howden

University of Maryland

July 27, 2000

Introduction

- Sea Surface Salinity is key ocean geophysical parameter that is "missing" from spaceborne remote sensing measurements of global ocean
 - deep and tropical ocean circulation
- Feasibility of sea surface salinity remote sensing
 - Klein and Swift (78), Swift and McIntosh (83), Ellison et al. (98)
 - Airborne proof-of-concept experiments
 - Blume et al. '78, Lagerloef et al. '95, Miller et al. '98, LeVine et al. '98
- Ocean Microwave emissivity depends on
 - surface dielectric constant (related to sea surface salinity)
 - surface roughness
 - sea surface temperature
 - others? (e.g. foam)

Introduction (cont'd)

- At L-Band (1.4GHz), Ellison et al.
 - $\triangle T_b \sim 0.8$ °K per PSU (>20°C)
 - $\triangle T_b \sim 0.4$ °K per PSU (5°C)
 - to achieve 0.1 to 0.2 PSU accuracy required for global ocean studies
 - require ~ 0.1 °K \triangle T accuracy
- To determine effects of surface roughness
 - use of active radar sensor with near simultaneous measurements at frequencies close to radiometers
- Additional evaluation of benefit
 - dual polarization (V,H)
 - dual frequencies (L/S-Band)
- Motivation to develop a high accuracy, active/passive L/S-Band airborne instrument

JPL

L and S-Band Aircraft Radiometer Characteristics

Frequencies	1.41 and 2.69 GHz
Antenna Beam Efficiency	> 90%
Polarization	Horizontal & Vertical
Beam Incidence Angle	38°
Spatial Resolution (@ 1.2 km)	0.7 km
Dicke Switch Rate	80 Hz
RMS Noise per Footprint	0.15 K
Absolute Calibration Accuracy	1.0 K
Calibration Stability	0.1 K

L and S-Band Aircraft Radar Characteristics

Frequencies	1.26 and 3.15 GHz
Polarization	HH, VH, VV
Beam Incidence Angle	38°
Spatial Resolution (@ 1.2 km)	0.7 km
Transmit Power and Duty cycle	5 Watts and 8%
Pulse Repetition Rate (PRF)	2.8 kHz
Signal to Noise Ratio per pixel	> 15 dB
Sensitivity	0.2 dB
Calibration Stability	0.1 dB

Cape Hatteras Ship and C-130 Tracks Over Gulf Stream on July 18, 1999

Open Ocean Data along the track of M/V Oleander July 18, 1999

OCEAN SALINITY AIRCRAFT INSTRUMENT

Summary of PALS July 1999 Ocean Measurements

- Over the Gulf Stream, large changes in the brightness temperature, ~ 3 K, were measured on all runs due to the large changes in the Salinity of ~ 5 PSU. There was good agreement with the TSG data from the Cape Hatteras.
- In the open ocean, a small change in the brightness temperature of \sim 0.2 K was measured on July 18th, which is consistent with the TSG data of a 0.4 PSU increase from the M/V Oleander
- Some problems with the ocean measurements
 - -- Near continuous RFI at S-band, minimum on Sunday, 18 July, No significant problem at L-band
 - -- Sun glint is a concern, and observations must be planned to minimize the effects

OCEAN SALINITY AIRCRAFT INSTRUMENT

- JPL has built a dual polarized microwave L and S-band active and passive aircraft instrument for precision ocean salinity measurements
- This will be the first instrument of this kind to provide accurate active and passive measurements at L and S-bands
- Will provide data to improve existing radiative transfer and backscatter models of ocean surfaces
- Will develop improved algorithms for salinity for testing in models and validation of future space instruments